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Abstract
Hamilton (2018) argues that one should never use the Hodrick-Prescott (HP) filter to detrend eco-
nomic time series and proposes an alternative approach. This comment reconsiders Hamilton’s
case against the HP filter, emphasizing two simple points. First, in the empirical example Hamilton
considers, the HP and Hamilton filters yield cyclical estimates with very similar dynamic prop-
erties, questioning the notion that one decomposition outperforms the other. Second, there is a
mechanical lag in the Hamilton trend, which might cast doubt on the economic plausibility of the
trend-cycle decomposition. It follows that the Hamilton filter might not constitute a systematically
better alternative to the HP filter.
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1 Introduction
In an important paper, Hamilton (2018) argues that one should never use the HP filter, proposed
by Hodrick and Prescott (1981, 1997) to decompose a time series into separate trend and cyclical
components. Hamilton makes his point in two steps. First, he highlights three drawbacks of the
HP filter: (a) It introduces spurious dynamic relations that have no basis in the underlying data-
generating process (DGP). (b) The estimates at the boundaries of the sample are not reliable. (c)
Common choices for the smoothing parameter are not supported by the data. Second, he proposes
an alternative regression-based strategy, since known as the Hamilton filter, that, he argues, extracts
plausible cyclical components while eschewing the pitfalls of the HP filter. According to Hamilton,
these elements close the case against using the HP filter.

But is the case really closed? Hamilton’s dismissal of the HP filter runs counter to widespread
empirical practice. Limitations of the HP filter are well known, but economists still use it for lack of
a better alternative. Therefore, the main question is whether the Hamilton filter indeed improves
on the HP filter. Using two simple points, this comment argues that the improvement is not so clear.

Hamilton (2018) motivates his criticism of the HP filter from a real-world example: the de-
trending of consumption and stock prices. Both series resemble random walks, but the cyclical
components extracted by the HP filter feature complex dynamics. Hamilton considers that these
patterns reflect the filter rather than true properties of the data. Surprisingly, Hamilton does not
discuss the properties of the cycles extracted by his alternative approach. This comment fills this gap
and finds that the Hamilton cycles exhibit persistence and comovements that closely mirror those
found in the HP cycles. Thus, the very example Hamilton invokes to dismiss the HP filter actually
fails to establish the superiority of his preferred strategy. If the dynamics found in the HP cycles are
spurious, then the similar dynamics found in the Hamilton cycles must be equally misleading. On
the contrary, if the dynamics found in the Hamilton cycles are authentic, then the similar dynamics
found in the HP cycles imply that the HP filter provides at least a reasonable cyclical estimate.

This first point is mostly rhetorical and only questions the bite of Hamilton’s empirical criticism
of the HP filter. The second point is more substantial: when the original series is persistent, there
is a mechanical delay between the data and the estimated Hamilton trend. At a basic level, this
is expected: Hamilton defines the trend as an 8-quarter-ahead forecast for quarterly series, so that
the trend component reacts to data movements with an automatic two-year gap. While Hamilton
does not discuss this timing, this comment shows that it might result in implausible trend-cycle
decompositions. For instance, the estimated trend for stock prices rises during most stock-market
contractions, before falling abruptly two years after the actual drop in prices, when valuations are
already recovering. A similar issue arises when detrending real output and interpreting the trend
as potential output: in this case, potential output rises mechanically during most recessions, before
sharply falling during the recovery. Of course, given the additive trend-cycle decomposition, ques-
tioning the timing of trend estimates necessarily leads to doubts about cyclical estimates as well.

In light of these two points, this comment concludes that the Hamilton filter might not offer
a systematically superior alternative to the HP filter. A more balanced assessment is that the two
filters provide different views of the data, and that which view is more useful is likely to depend on
the application. More broadly, the classic question of how to best extract a stationary component
from a potentially non-stationary time series remains open and economists can only benefit from
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viewing alternative approaches as complementary rather than substitute, as Canova (1998) argued
more than twenty years ago.

1.1 Literature

There is an infinite number of ways to detrend a time series, which unsurprisingly led to a large
literature comparing, evaluating, and proposing detrending methods. It is beyond the scope of this
comment to review this literature. Here, the focus is more narrowly restricted to the HP and Hamil-
ton filters.

Hamilton (2018) summarizes the literature about the HP filter. Important papers include Harvey
and Jaeger (1993) and Cogley and Nason (1995), who showed that the HP filter can produce cycli-
cal components with dynamic properties absent from the original DGP, and de Jong and Sakarya
(2016), who reviewed in detail the econometric properties of the HP filter.

Some authors have also evaluated the theoretical properties of Hamilton’s regression filter. For
instance, Schuler (2021) studies its spectral properties and shows that it amplifies longer-term cy-
cles and mutes shorter-term fluctuations. As a result, the Hamilton filter typically attributes more
medium-term movements to the cycle compared to more standard definitions of the business-cycle
phenomenon (see, e.g., Stock and Watson, 1999). Schuler also argues that the Hamilton filter may
alter the dynamic relationship between several variables because it induces potentially different
phase shifts in the cyclical components. This comment concurs with Schuler that the timing prop-
erties of the Hamilton decomposition may be problematic.

Jonsson (2020a) documents numerically that the HP and Hamilton filters produce cyclical com-
ponents with similar dynamic properties in several univariate setups, including the random-walk
case. Jonsson concludes that, if one views the properties of HP cycles as problematic, then the
same properties found in Hamilton cycles can only be viewed as problematic. This comment com-
plements Jonsson (2020a) at three levels. First, it emphasizes that Jonsson’s critique applies to
Hamilton’s own empirical example, questioning his argumentation. Second, it considers a bivariate
setup, shedding light on the cross-correlations and joint dynamics discussed by Hamilton (2018).
Third, it highlights the timing properties of the Hamilton trend, which affect the economic plausi-
bility of the decomposition.

Other authors compare the properties of the two filters when applied to actual or simulated
data. For instance, Hodrick (2020) simulates various time-series models approximating the U.S.
real gross domestic product (GDP) and evaluates the cyclical components recovered by the HP fil-
ter, the Hamilton filter, and a band-pass filter. Hodrick argues that the Hamilton filter outperforms
the HP filter for simple DGPs and that the HP and band-pass filters perform better for complex mod-
els. Also focusing on real GDP, Hall and Thomson (2021) and Dritsaki and Dritsaki (2022) argue
that the HP filter provides more plausible trend-cycle decompositions than the Hamilton filter for
New Zealand and Greece. Of course, an issue in interpreting these results is the ambiguity related
to the definition of the “true” cyclical component of the data. Another study by Jonsson (2020b)
confirms the appealing real-time performance of the Hamilton filter, which behaves better than the
HP filter in presence of data revision.
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Finally, a third group of authors propose extensions of the HP and Hamilton filters. For instance,
Phillips and Shi (2021) and Mei, Phillips, and Shi (2022) suggest that repeated applications of the
HP filter result in improved asymptotic ability to recover a variety of trends. This iterative proce-
dure, dubbed the boosted HP filter, is grounded in the machine-learning theory of boosting. Quast
and Wolters (2022), on the other hand, suggest that smoothing the Hamilton trend by averaging
across estimates obtained from different forecast horizons leads to cyclical components with better
properties. The results reported in this comment indicate that the Quast-Wolters approach does not
solve the timing issue associated with Hamilton trends. Lastly, Hamilton and Xi (2023) show how
the Hamilton filter can be used to make non-stationary time series amenable to Principal Compo-
nent Analysis. They also document the robustness of the Hamilton filter to the extreme COVID-19
outliers.

2 The HP and Hamilton Filters

For completeness, this section provides a brief characterization of the HP and Hamilton filters and
reviews some of their properties. More details can be found in the original papers (Hodrick and
Prescott, 1981, 1997; Hamilton, 2018).

Both the HP and the Hamilton filters decompose a time series 𝑥𝑡 into the sum of two compo-
nents: 𝑥𝑡 = 𝑔𝑡 + 𝑣𝑡 , where 𝑔𝑡 is the trend and 𝑣𝑡 is the cycle. The difference between the two filters
lies in the statistical restrictions used to identify the trend component.

The HP filter defines the trend component as a smooth variable that does not differ much from
the observed series. Given a sample of data {𝑥𝑡 }𝑇𝑡=1, this objective is formalized by choosing 𝑔𝑡 as
the solution to the following program:

min
{𝑔𝑡 }𝑇𝑡=−2

{
𝑇∑︁
𝑡=1

(𝑥𝑡 − 𝑔𝑡 )2 + 𝜆

𝑇∑︁
𝑡=1

[(𝑔𝑡 − 𝑔𝑡−1) − (𝑔𝑡−1 − 𝑔𝑡−2)]2
}
, (1)

where 𝜆 ≥ 0 is a smoothing parameter penalizing large changes in the slope of the trend 𝑔𝑡 . The HP
trend reduces to the original series when there is no smoothness penalty (𝜆 → 0) and it corresponds
to a linear time trend when the penalty is extreme (𝜆 → ∞). At each period, the HP cycle verifies
𝑣𝑡 = 𝑥𝑡 − 𝑔𝑡 .

Looking at the minimization program (1), it is clear that the value of the HP trend at any
given date depends on the full set of available observations on 𝑥𝑡 . This can be formalized in
two ways. Given a finite sample of data, stacking all observations on 𝑥𝑡 in a column vector
𝑥 = (𝑥𝑇 , 𝑥𝑇−1, . . . , 𝑥1)′ allows expressing the HP trend as a column vector 𝑔 = 𝐴★(𝜆)𝑥, where
𝑔 = (𝑔𝑇 , 𝑔𝑇−1, . . . , 𝑔−1)′ stacks the trend values and 𝐴★(𝜆) is a (𝑇 + 2, 𝑇) matrix whose entries are
functions of the smoothing parameter 𝜆. In population, the HP trend admits a symmetric two-sided
representation, 𝑔𝑡 = ℎ★(𝐿)𝑥𝑡 , where 𝐿 is the lag operator and where the filter weights {ℎ★

𝑗
}∞
𝑗=−∞ are

determined only by the value of 𝜆. Given the additive trend-cycle decomposition, there exist similar
matrix and filter representations for the HP cycles.1

1One can force the trend and cyclical components at each period to load only on current and past observations of the
data. This comment does not discuss this one-sided HP filter.
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Hodrick and Prescott select the value of the smoothing parameter based on prior assumptions
about the relative volatility of the trend and cyclical components for typical macroeconomic time
series. This leads them to advocate the use of 𝜆 = 1, 600 for quarterly data. Ravn and Uhlig (2002)
show how to extend the logic to other frequencies.

Turning to the Hamilton filter, it defines the trend component as the value that we would expect
for the original series at date 𝑡, based on its behavior up to date 𝑡 − ℎ. This is formalized using a
simple linear regression of 𝑥𝑡 on a constant, the realization ℎ periods ago 𝑥𝑡−ℎ, and 𝑝 − 1 additional
lags 𝑥𝑡−ℎ−1, . . . , 𝑥𝑡−ℎ−𝑝+1. For quarterly time series, Hamilton (2018) suggests using ℎ = 8 quarters
and 𝑝 = 4 lags, so that the regression has the following form:

𝑥𝑡 = 𝑏0 + 𝑏1𝑥𝑡−8 + 𝑏2𝑥𝑡−9 + 𝑏3𝑥𝑡−10 + 𝑏4𝑥𝑡−11 + 𝑢𝑡 . (2)

The fitted values and residuals from this linear regression correspond to the estimated Hamilton
trend and cycle: 𝑔𝑡 = �̂�𝑡 and 𝑣𝑡 = �̂�𝑡 .

Contrasting the two filters highlights the drawbacks Hamilton and others find in the HP filter.
First, the HP filter performs the trend-cycle decomposition using a matrix/filter that depends solely
on the smoothing parameter 𝜆, and not on the properties of the series under consideration. For
instance, given a value for 𝜆, the HP filter will detrend a white noise and a random walk with the
same exact filter. Second, the HP filter is two-sided, so that the trend and cyclical estimates at any
given period depend on past, present, and future values of the original series. In finite samples, this
implies that the filtered values at the bounds of the sample are defined differently from those in the
middle. Third, the value of the smoothing parameter 𝜆 is typically chosen without reference to the
observed features of the data.

Hamilton designs his alternative approach so as to avoid these drawbacks. His regression filter
estimates a population property of the DGP, the linear regression of the variable on a constant and
its past values, avoiding the use of a fixed detrending operator as done by the HP filter. Simply
put, the Hamilton cycle recovers a feature of the original DGP, while the HP cycle is a feature of
the filtered DGP. The Hamilton filter’s one-sided nature also ensures that the trend-cycle decompo-
sition at date 𝑡 solely relies on the information available up to that date.2 Finally, the regression
coefficients are estimated from the data, instead of being imposed as in the HP filter.

3 Cyclical Dynamics of Stock Prices and Consumption

Section III.A in Hamilton (2018) illustrates the issues arising when one applies the HP filter to
detrend typical economic time series using an empirical example, based on stock prices and con-
sumption. This section reexamines this example by submitting the Hamilton filter to the same
evaluation as the HP filter.

Figures 1 and 2 below reproduce Hamilton’s Figures 2 and 3 using an extended sample. Data
definitions and sources are the same as in Hamilton (2018). Stock prices are measured as 100 times
the natural log of the end-of-quarter value for the S&P 500 composite stock price index published

2This is a population statement. Given a finite sample of data, all observations contribute to estimating the regression
coefficients, so that each period’s trend-cycle decomposition relies on a small amount of future information.
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Figure 1: Autocorrelations and cross-correlations for the first differences of
stock prices and real consumption.

Notes: Upper left: Autocorrelations of the first difference of end-of-quarter value for log S&P 500
composite stock price index. Upper right: Autocorrelations of the first difference of log real con-
sumption. Lower panels: Cross-correlations.

by Robert Shiller, available online from http://www.econ.yale.edu/~shiller/data.htm.
Consumption is measured as 100 times the natural log of real personal consumption expenditures
from the U.S. National Income and Product Accounts. The data are quarterly and run from 1950Q1
to 2019Q4.

Figure 1 reports the autocorrelation structure for the first differences of log stock prices and real
consumption, as well as their cross-correlations. The top panels show that growth in either series
is essentially unpredictable, while the bottom panels indicate that after first differencing neither
series has strong predictive power for the other. These features are in line with the idea that both
variables resemble random walks.

Figure 2 reports the same statistics for the HP cycles extracted from the two series when the
smoothing parameter takes the standard value 𝜆 = 1, 600. Hamilton emphasizes the presence of
a rich auto-regressive structure in the cyclical components of stock prices and real consumption.
The cycles are strongly persistent, so that they are predictable from their past values. The cross-
correlations also indicate that the two cycles forecast each other. This discrepancy between the
original properties of the data and those of the HP cycles embodies Hamilton’s claim that the HP
filter distorts the series: “The rich dynamics in [the cyclical components] are purely an artifact of
the filter itself and tell us nothing about the underlying data-generating process. Filtering takes us
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Figure 2: Autocorrelations and cross-correlations for HP-filtered stock prices
and real consumption.

Notes: Upper left: Autocorrelations of HP-filtered end-of-quarter value for log S&P 500 composite
stock price index. Upper right: Autocorrelations of HP-filtered log real consumption. Lower panels:
Cross-correlations. Smoothing parameter: 𝜆 = 1, 600.

from the very clean understanding of the true properties of these series [...] to the artificial set of
relations [found in the cycles, which] summarize the filter, not the data.”

According to Hamilton, two characteristics of the HP filter combine to generate these spurious
dynamics. First, because the HP filter is two-sided, the estimate at each date loads on past, present,
and future shocks. It follows that the cyclical component “is both highly predictable (as a result
of the dependence on [lagged shocks]) and will in turn predict the future (as a result of depen-
dence on future [shocks]).” Second, the coefficients relating the cyclical estimate to the underlying
shocks “are determined solely by the value of 𝜆,” so that the HP filter effectively imposes dynamics
on the data. As noted above, Hamilton overcomes these deficiencies by designing his detrending
method as an estimated backward-looking regression. Because the coefficients 𝑏0, . . . , 𝑏4 in (2) are
estimated from the data, the filter adapts to the underlying DGP. Because the regression uses only
past information, the estimated trend and cyclical components will not depend on future shocks.

Surprisingly, Hamilton (2018) does not report the autocorrelation function for the cycles ex-
tracted from stock prices and real consumption by his alternative approach. Yet, evaluating both
filters on the same dataset would be a fair comparison. It would also clarify how moving from
the two-sided, calibrated HP filter to the one-sided, estimated Hamilton filter affects the cyclical
dynamics extracted from the data. Figure 3 fills this gap. Following Hamilton’s recommendation
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Figure 3: Autocorrelations and cross-correlations for Hamilton-filtered stock
prices and real consumption.

Notes: Upper left: Autocorrelations of Hamilton-filtered end-of-quarter value for log S&P 500 com-
posite stock price index. Upper right: Autocorrelations of Hamilton-filtered log real consumption.
Lower panels: Cross-correlations. Regression parameters: 𝑝 = 4 and ℎ = 8.

for quarterly series, the filter uses 𝑝 = 4 and ℎ = 8, so that the cyclical components are obtained by
regressing each series at date 𝑡 on the four most recent observations available at date 𝑡 − 8.

A striking finding is that the Hamilton cycles display virtually the same dynamic behavior as the
HP cycles: the cyclical components are very persistent (the autocorrelations decay slowly toward
zero); they have strong forecasting power for each other (the cross-correlations are high at several
lags); and there are complex dynamics in cross-correlations that are very similar to those found in
HP cycles. Observing the magnitude of the correlations, we see that the Hamilton cycles display
even more persistence and more cross-variable predictability than the HP cycles. This is confirmed by
the business-cycle statistics reported in Table 1: the first-order autocorrelations of Hamilton-filtered
series are 0.89 for stock prices and 0.90 for real consumption, larger than the corresponding values
computed from HP-filtered series (0.76 and 0.81). Of course, the HP and Hamilton cycles extracted
from stock prices and real consumption are different, but the important point is that they share very
similar dynamics.3

These are surprising results, which weaken Hamilton’s case against the HP filter. Given Hamil-

3For instance, Table 1 shows that the Hamilton cycles are about twice as volatile as the HP cycles, even though they have
similar persistence properties.
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ton’s claims that the dynamics present in the HP cycles are “spurious [...] relations that have no
basis in the underlying data-generating process” (abstract, p. 831) and that HP-filtering “takes
us from the very clean understanding of the true properties of these series” to an “artificial set of
relations [which] summarize the filter, not the data,” then it is difficult not to draw the same conclu-
sions about the similar dynamics found in the Hamilton cycles. Conversely, if one adopts Hamilton’s
definition of cycles, then comparing Figures 2 and 3 suggests that the HP filter characterizes the
cyclical properties of the data relatively well.

The example also clarifies that Hamilton’s argument linking the persistence and predictability
found in the HP cycles to the calibrated, two-sided nature of the HP filter is partly misleading, since
his estimated, one-sided filter produces cyclical estimates with similar persistence and predictabil-
ity.4

From a broader perspective, Hamilton sees the HP decomposition as spurious because it applies
the same filter to all series and because it does not adapt the smoothing parameter to data prop-
erties. But why would that be a problem? Band-pass filters, which isolate time-series components
with specific frequency properties, also present coefficients that depend only on the frequency band
of interest, and not on the time series they are applied to (see, e.g., Baxter and King, 1999). In fact,
Baxter and King show that, when the smoothing parameter takes the usual value 𝜆 = 1, 600, the HP
filter closely resembles a high-pass filter targeting frequencies higher than or equal to 𝜋/16. Under
this perspective, the fixed-weight design of the HP filter appears neither problematic nor spurious.

Furthermore, Hamilton’s definition of spuriousness is quite different from that usually adopted
in the literature. Following Harvey and Jaeger (1993) and Cogley and Nason (1995), it is well
known that applying the HP filter to integrated processes can generate cyclical dynamics when
none are in fact present in the data. When economists argue that the HP filter yields spurious
results, they generally have this classic Yule-Slutzky distortion in mind. As the empirical example
illustrates, and as shown formally in Hamilton (2018) and below, the Hamilton filter also finds
business-cycle dynamics when detrending integrated processes. Hence, this metric too seems to
reject the notion that the HP filter is more spurious than the Hamilton filter.

4 Trend Estimates for Stock Prices and Consumption

Hamilton criticizes the two-sided nature of the HP filter, which allows the trend-cycle decomposi-
tion at each point in time to use past, current, and future information. As noted above, Hamilton
addresses this issue by designing his alternative filter as a backward-looking regression. A conve-
nient way to evaluate the strengths and weaknesses of the two approaches is to look at the filters’
implications for the trend components. This is done in Figure 4, which compares the historical
path of log stock prices with the estimated HP and Hamilton trends. Reporting the same figure
for consumption would be less interesting because the data and the trends are more difficult to
disentangle visually, but the conclusion would be similar.

The HP trend is smooth and lies well within the path of the original data, in line with Hodrick
and Prescott’s notion of a trend. In contrast, the Hamilton trend is quite volatile. As pointed out

4See Jonsson (2020a) for a similar view, based on Monte-Carlo simulations.

9



A. Moura – Why You Should Never Use the Hodrick-Prescott Filter (Comment). JCRE (2024-1)

Table 1: Business-cycle statistics.

Panel A - Volatility and persistence

Standard deviation Autocorrelation
Stock prices
First difference 7.20 0.12
HP filter 9.99 0.76
Hamilton filter 20.95 0.89
Real consumption
First difference 0.81 0.09
HP filter 1.23 0.81
Hamilton filter 2.73 0.90

Panel B - Contemporaneous correlation

Stock prices Real consumption
FD HP Hamilton FD HP Hamilton

Stock prices
First difference (FD) 1.00
HP filter 0.34 1.00
Hamilton filter 0.31 0.71 1.00
Real consumption
First difference 0.16 0.25 0.29 1.00
HP filter −0.14 0.42 0.33 0.29 1.00
Hamilton filter −0.03 0.36 0.45 0.40 0.66 1.00

Notes: Stock prices: 100 times log S&P 500 composite stock price index. Consumption: 100 times
log real consumption. Sample: 1950Q1 to 2019Q4. HP cycles computed with 𝜆 = 1, 600; Hamilton
cycles computed with 𝑝 = 4 and ℎ = 8.

by Hamilton (p. 835), “[m]aking use of unknowable future values [...] is in fact a fundamental
reason that HP-filtered series exhibit the visual properties that they do, precisely because they im-
pose patterns that [...] could not be recognized in real time.” For instance, during the 2000s, the
stock market experienced two boom-bust episodes, related to the dot-com bubble and to the 2008
financial crisis. Knowledge of future developments allows the HP filter to attribute these temporary
episodes to the cyclical component of stock prices. Instead, the Hamilton trend responds to both
episodes.

Hamilton (p. 835) finds the smooth HP trend problematic: “Some researchers might be attracted
by the simple picture of the ‘long-run’ component of stock prices [provided by the HP trend]. But
that picture is just something that their imagination has imposed on the data.” However, it is not
clear why we should willingly throw away sample information useful for the trend-cycle decompo-
sition. With hindsight, we know that the boom-bust episodes were temporary, so why would we
not use this knowledge to disentangle the trend from the cycle? Indeed, most time-series methods
infer unobserved variables through similar two-sided estimates, from band-pass filters (Baxter and
King, 1999; Stock and Watson, 1999; Christiano and Fitzgerald, 2003) to unobserved-components
models (Harvey, 1985; Harvey and Jaeger, 1993; Harvey and Trimbur, 2003) and DSGE models
(Edge, Kiley, and Laforte, 2008; Christiano, Trabandt, and Walentin, 2010; Justiniano, Primiceri,
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Figure 4: HP, Hamilton, and Quast-Wolters trends for stock prices.

Notes: Thin black line: 100 times log S&P 500 composite stock price index. Thick blue line: HP
trend (𝜆 = 1, 600). Dashed red line: Hamilton trend (𝑝 = 4, ℎ = 8). Dotted black line: Quast-
Wolters trend. Shaded areas: NBER recession dates.

and Tambalotti, 2013). There is nothing peculiar about the HP filter in this dimension.

Furthermore, it is not even clear that the Hamilton filter improves on the HP filter when pre-
serving the information structure is especially important. Indeed, Figure 4 also reveals that the
Hamilton trend reacts to movements in the original series with a mechanical two-year delay. This
is especially apparent in the later part of the sample, when the Hamilton trend systematically lags
the 1995-2000 rise in stock prices, the burst of the dot-com bubble in 2001-2002, the 2003-2007
rebound, and the 2008-2009 financial crisis by a constant window of 8 quarters. Of course, this
behavior stems directly from Hamilton’s choice to build the trend-cycle decomposition from a 2-
year-ahead forecast.5

Few economists would view the Hamilton trend in Figure 4 as an attractive estimate of the trend
in stock prices. It follows from the additivity of the decomposition that the Hamilton cycle may not
be the most attractive estimate of the cyclical component. The mechanical lag in the trend amplifies

5Figure 4 also shows the Quast-Wolters trend, represented by a dotted line. The estimate, obtained by averaging Hamil-
ton regressions for 4- to 12-quarter-ahead horizons, presents the same lag in the trend. This is not surprising because
averaging 4- to 12-quarter-ahead forecast errors results in the same average 8-quarter delay as found in the original Hamil-
ton trend. A similar lag is present when detrending GDP instead of stock prices; see Figure 2, Panel A, in Quast and Wolters
(2022).
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the magnitude of the estimated cycle when the data present sharp movements. A more plausible
trend component would dampen these movements and, consequently, the volatility of the cyclical
component. More importantly, the lag matters when the trend has a direct economic interpretation.
Consider, for instance, applying the Hamilton filter to decompose real GDP into potential output
(trend) and the output gap (cycle), as Hall and Thomson (2021) and Dritsaki and Dritsaki (2022).
Then, the two-year delay in the Hamilton trend implies that estimated potential output will rise
during most downturns and start falling when the recovery is already ongoing, in a very mechani-
cal fashion. The economic plausibility of such behavior is clearly dubious.

To illustrate this timing issue, Figure 5 looks at the behavior of stock prices before, during, and
after the 2008-2009 recession. The top panel reports the log-level of stock prices between 2005
and 2013, together with the estimated HP and Hamilton trends. The bottom panel reports the
corresponding cyclical components. As noted by Hamilton, the HP trend is essentially flat over the
period, so that both the pre-recession boom and the post-recession bust in stock prices are viewed
as cyclical events. The Hamilton trend, on the other hand, tracks stock prices with a two-year delay:
it rises between 2005 and mid-2009, falls abruptly exactly two years after the 2008 stock-market
drop, before rising again from 2011 on. This behavior largely shapes the estimated Hamilton cycle,
which presents a much larger drop in 2009 compared to the HP cycle, with a negative deviation
with respect to trend of about 40% for the HP filter versus 70% for the Hamilton filter. Another
noticeable effect occurs in 2011, as the mechanical fall in the Hamilton trend two years after the
crisis generates a surprising spike in the Hamilton cycle, that is present neither in the original data
nor in the HP cycle.

This discussion suggests that, while the HP filter might rely excessively on future information,
the Hamilton filter might under-utilize recent and current information, resulting in an economically
implausible decomposition. Indeed, how plausible is it that agents in the economy, observing the
sharp 2008 fall in stock prices, would maintain the view that the trend component is increasing up
to mid-2009? And why would they suddenly realize in 2010, two years after the drop and while the
economy is already recovering, that the contraction was in fact permanent? It is hard to imagine
a credible information structure that would rationalize this inference, which nevertheless underlies
Hamilton’s definition of the trend-cycle decomposition. While the consequences of this timing issue
might vary with the application, it seems important to highlight it to potential users of the Hamilton
filter.

5 Simple Properties of the Hamilton Filter

This section demonstrates how the points made above find their origin in the design of the Hamil-
ton filter. Hamilton (2018) presents most of the results discussed here, but he does not emphasize
their interpretation. Following Hamilton, the discussion centers on the random-walk case, but the
generalization is immediate.

Let 𝑥𝑡 and 𝑦𝑡 follow two random walks: 𝑥𝑡 = 𝑥𝑡−1 + 𝜖𝑡 , 𝑦𝑡 = 𝑦𝑡−1 + 𝜂𝑡 , with 𝜖𝑡 and 𝜂𝑡 two white-
noise processes with variances 𝜎2

𝜖 and 𝜎2
𝜂 and covariance 𝜌𝜎𝜖𝜎𝜂 . For instance, 𝑥𝑡 might represent

the log of stock prices and 𝑦𝑡 the log of real consumption: the two variables have low forecasting
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Figure 5: Stock prices around the 2008-2009 recession.

Notes: Black line: 100 times log S&P 500 composite stock price index. Blue lines: HP trend and
cycle (𝜆 = 1, 600). Dashed red lines: Hamilton trend and cycle (𝑝 = 4, ℎ = 8). Shaded areas: NBER
recession dates.

power for each other, and a common shock might induce contemporaneous comovement.6

Section IV.B in Hamilton (2018) shows that, in population, the Hamilton filter decomposes 𝑥𝑡
and 𝑦𝑡 as follows: the trend components are given by

𝑔𝑥𝑡 = 𝑥𝑡−ℎ, 𝑔
𝑦
𝑡 = 𝑦𝑡−ℎ, (3)

6This bivariate random-walk representation provides a good approximation of the data. Letting 𝑥𝑡 denote 100 times the
log of stock prices and 𝑦𝑡 100 times the log of real consumption, estimating a simple first-order vector autoregression yields
the following parameter values:[

𝑥𝑡
𝑦𝑡

]
=

[
−0.76
2.47

]
+
[
0.98 0.03
0.00 0.99

] [
𝑥𝑡−1
𝑦𝑡−1

]
+
[
𝜖𝑡
𝜂𝑡

]
, Var

[
𝜖𝑡
𝜂𝑡

]
=

[
51.89 0.99
0.99 0.62

]
.

The implied correlation between the innovations is 𝜌 = 0.17.
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while the cyclical components verify

𝑣𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−ℎ =

ℎ−1∑︁
𝑗=0

𝜖𝑡− 𝑗 , 𝑣
𝑦
𝑡 = 𝑦𝑡 − 𝑦𝑡−ℎ =

ℎ−1∑︁
𝑗=0

𝜂𝑡− 𝑗 . (4)

Equation (3) indicates that, in the random-walk case, the Hamilton trend is exactly the value of
the variable ℎ periods ago. This property explains the mechanical two-year delay found in the trend
estimates discussed in Section 4. With richer autoregressive processes, the Hamilton trend would
be a more complex function of past observations, but the crucial point that the trend estimate at
date 𝑡 does not use information available from periods 𝑡, 𝑡 − 1, . . . , 𝑡 − ℎ + 1 would remain true.7

Under the assumption that 𝜖𝑡 and 𝜂𝑡 are white-noise processes, equation (4) implies the follow-
ing second moments for the cyclical components:

var(𝑣𝑥𝑡 ) = ℎ𝜎2
𝜖 , var(𝑣𝑦𝑡 ) = ℎ𝜎2

𝜂 , (5)

corr(𝑣𝑥𝑡 , 𝑣𝑥𝑡− 𝑗 ) = corr(𝑣𝑦𝑡 , 𝑣
𝑦

𝑡− 𝑗
) = ℎ − 𝑗

ℎ
if 𝑗 = 0, 1, . . . , ℎ, = 0 if 𝑗 ≥ ℎ + 1, (6)

corr(𝑣𝑥𝑡 , 𝑣
𝑦

𝑡− 𝑗
) = corr(𝑣𝑦𝑡 , 𝑣𝑥𝑡− 𝑗 ) =

(ℎ − 𝑗)𝜌
ℎ

if 𝑗 = 0, 1, . . . , ℎ, = 0 if 𝑗 ≥ ℎ + 1. (7)

These expressions imply that: (i) The Hamilton filter extracts persistent cycles out of random walks.
(ii) It extracts interrelated cycles out of correlated random walks. (iii) The variances, the persis-
tence, and the joint dynamics of the cycles are entirely determined by the forecast horizon ℎ. All
three properties follow from Hamilton’s definition of the cycle as a ℎ-step-ahead forecast error: as
shown by (4), two realizations of 𝑣𝑥𝑡 and 𝑣

𝑦
𝑡 separated by 𝑗 periods share ℎ− 𝑗 common innovations

when 𝑗 ≤ ℎ, necessarily leading to serial correlation and comovement. These properties also ex-
plain the dynamics found in Hamilton-filtered stock prices and consumption.

This analysis clarifies that, while the Hamilton filter seems to attribute shocks whose effects
persist less than ℎ periods to the cycle and shocks whose effects persist more than ℎ periods to
the trend, this distinction is not entirely accurate. Instead, what the Hamilton filter does is to
attribute initially all unexpected shocks to the cyclical component, before assigning the effects that
still persist after ℎ periods to the trend. This sharp cutoff at lag ℎ gives rise to the mechanical delay
in the Hamilton trend.

6 Conclusion

Hamilton (2018) argues that economists should stop using the HP filter. This comment suggests
that Hamilton’s case is not entirely convincing: the Hamilton cycles present the same kind of filter-
induced dynamics as Hamilton criticizes in the HP cycles, and the Hamilton trend lags the data by
construction, which may threaten the economic plausibility of the decomposition. These two points
clarify that the Hamilton filter provides a very particular trend-cycle decomposition, that might not
outperform the HP filter on a systematic basis.

7The only case in which the Hamilton trend does not feature a mechanical delay relative to the data is when the value
of 𝑥𝑡 does not depend on the lagged observations 𝑥𝑡−ℎ, 𝑥𝑡−ℎ−1, . . . , 𝑥𝑡−ℎ−𝑝+1. Such a configuration is unlikely to arise in
macroeconomic applications.
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